If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-2y-12=0
a = 3; b = -2; c = -12;
Δ = b2-4ac
Δ = -22-4·3·(-12)
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{37}}{2*3}=\frac{2-2\sqrt{37}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{37}}{2*3}=\frac{2+2\sqrt{37}}{6} $
| -2m-5m-8=3+(-7)+ | | -j^2*2j=0 | | 1x+16=7x | | -4d-8=-3d | | 1-2j=-3j-10 | | -4n−4=4−10n+10 | | -2(1-n)-8(7n-1)=-48 | | -a*a=0 | | 19+17f=19+19f+4 | | -4p-2(4-2p)=7 | | 4x+2=8x-6x | | 5t-5-5=5+7 | | 2(3x-1)+8=24 | | 5h-7=2h-2 | | -18g-19=-16g+19 | | 8-(p+2)+p=4(p+3)+5 | | -54=8s | | 51=7(-1=2v)+2 | | 7x+4x-7=26 | | 51=7(-1=2v)=2 | | 8d+6=3d+16-15d | | 7.28-13.8y=19.85-19.5y-4.22 | | -32=6(4+3n)-7(-4n+8) | | (x^2=2x-5)-(3x+2)=x^2-1 | | 3+5=2(3+4x) | | 3r+7/4=-5 | | 5x+1+74=13x-5 | | 8x+2=6x+1 | | 3(6=5y)=3(=4y) | | 6x-1=9x+15 | | 15b^2+4b-15=0 | | 4x+9=5x+1 |